Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Poly[[μ_2 -aqua-bis[(1,10-phenanthroline)nickel(II)]]-di- μ_2 , μ_4 -5-nitro-1,3benzenedicarboxylato]

Hong-Yin He,^a Yi-Li Zhou^a and Long-Guan Zhu^b*

^aDepartment of Chemical Engineering, Jiaxing College, Jiaxing 314001, People's Republic of China, and ^bDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China Correspondence e-mail: chezlg@zju.edu.cn

Received 18 August 2004 Accepted 20 September 2004 Online 22 October 2004

The reaction of Ni(CH₃COO)₂·4H₂O, 5-nitro-1,3-benzenedicarboxylic acid (H₂nmbdc), 1,10-phenanthroline and water under hydrothermal conditions yields the first reported twodimensional nickel coordination polymer with water- and carboxylate-bridged dimeric units, viz. [Ni₂(C₈H₃NO₆)₂- $(C_{12}H_8N_2)_2(H_2O)]_n$. The coordination polyhedron of the Ni^{II} ion in the title structure is an octahedron defined by an N₂O₄ donor set. The water molecule is positioned on a mirror plane and the 5-nitro-1,3-benzenedicarboxylate group is located on a twofold axis. Two types of nmbdc²⁻ coordination mode are observed: one is a bis-monodentate mode, μ_2 -nmbdc²⁻, and the other is a bis-bridging mode, μ_4 -nmbdc²⁻. The dimeric unit in the title compound is similar to the structural moiety in urease. In the two-dimensional framework in the title compound, strong stacking interactions between benzene rings (μ_2 -nmbdc²⁻ and μ_4 -nmbdc²⁻) and 1,10-phenanthroline ligands are observed.

Comment

Binuclear nickel units with both water and carboxylate bridging ligands have been found to be important structural moieties in some metalloenzymes, such as urease; these units can catalyze the hydrolysis of urease to form ammonia and carbamate (Person et al., 1997; Jabri et al., 1995). Recently, several binuclear complexes have been prepared as models for urease in order to explore the nature of urea hydrolysis (Sung et al., 2001; Barrios & Lippard, 1999; Barrios & Lippard, 2000). However, only a few such nickel binuclear carboxylate complexes have been structurally characterized and all were synthesized using ligands with one carboxyl group. In the present study, we use a dicarboxylic acid (5-nitro-1,3benzenedicarboxylic acid, H₂nmbdc) to prepare the first reported two-dimensional compound with a μ_2 -aqua dimeric motif, namely $[Ni_2(nmbdc)_2(phen)_2(H_2O)]_n$, (I) (phen is 1,10phenanthroline).

Compound (I) consists of a two-dimensional Ni^{II} complex in which the Ni atom has a six-coordinate geometry completed by two N atoms from one phen group, one O atom from the coordinated water molecule and three O atoms from three nmbdc²⁻ ligands (Fig. 1 and Table 1). The water molecule occupies a special position in a mirror plane and the 5-nitro-1,3-benzenedicarboxylate group occupies a special position on a twofold axis. There are two nmbdc2- coordination modes in the title compound: one is a bis-monodentate mode, μ_2 -nmbdc²⁻, and the other is a bis-bridging mode, μ_4 -nmbdc²⁻. The basic motif in the two-dimensional framework is a dimeric unit, viz. $[Ni_2(\mu_2-nmbdc)(\mu_4-nmbdc) (phen)_2(\mu_2-H_2O)$], in which the water molecule bridges two Ni atoms, with an Ni···Ni distance of 3.5042 (8) Å; this value agrees well with the Ni···Ni distance observed in urease (3.5 Å).

In general, a binuclear unit constructed from bridging carboxylate groups has four carboxyl groups around two metal centres, with short metal-metal distances; a paddle-wheel motif is expected (Braqun *et al.*, 2001; Li *et al.*, 1998; Gao *et al.*, 2003). In (I), the dimeric unit comprises two bridging and two monodentate carboxyl groups. The bridging water molecule and intramolecular hydrogen bonds assemble the mono-

An *ORTEP*-3 diagram (Farrugia, 1997) of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The atom labeled with a hash (#) is at the symmetry position $(\frac{1}{2} - x, 1 - y, z)$.

dentate carboxyl groups into pseudo-bridging linkers. Therefore, the dimeric motif in (I) could be considered as a pseudopaddle-wheel motif; even the nmbdc^{2–} ligands are roughly parallel (the dihedral angle is 6.19°). This dimeric motif in (I) is found in several reported binuclear water-bridged nickel complexes, such as [Ni₂{OOCC(CH₃)₃]₂{ μ_2 -OOCC(CH₃)₃]₂-(2,2'-bipy)₂(μ_2 -H₂O)], (II) (Eremenko *et al.*, 1999). The difference between the coordination geometries in (I) and (II) is the orientation of the carboxylate ligands with respect to the Ni atoms.

In the two-dimensional framework in (I) (Fig. 2), the Ni(μ_4 -nmbdc) building blocks form a one-dimensional chain (Fig. 3*a*), while the Ni(μ_2 -nmbdc) blocks form dimeric species; the dimeric units are held together by μ_2 -aqua molecules and extend into a one-dimensional chain (Fig. 3*b*). The combination of Ni(μ_4 -nmbdc) and Ni(μ_2 -nmbdc)(μ_2 -H₂O) units leads to the assembly of a two-dimensional architecture. The Ni···Ni separations in these two one-dimensional chains are 8.7326 (8), 10.2223 (5), 10.5166 (8) and 10.5884 (8) Å.

Two complexes based on the M^{2+} -phen-H₂nmbdc system have been reported by Zhou *et al.* (2004). The copper compound, [Cu(nmbdc)(phen)]_n, (III), comprises a twodimensional network with a square-pyramidal copper center, in which the nmbdc²⁻ ligand has a μ_3 -bridging monoatomic monodentate coordination mode. The cobalt compound, [Co₂(nmbdc)₂(phen)₂]_n, (IV), comprises a one-dimensional chain and the nmbdc²⁻ ligand has a chelating-bridging coor-

Figure 2

A view of the two-dimensional framework in (I). Phen ligands, nitro groups and H atoms have been omitted for clarity.

Figure 3

(a) A view of the one-dimensional chain constructed from Ni(μ_4 -nmbdc) building blocks. (b) A view of the one-dimensional chain constructed from Ni(μ_2 -nmbdc)(μ_2 -H₂O) building blocks. H atoms and nitro groups have been omitted for clarity.

dination mode. The μ_2 -nmbdc²⁻ and μ_4 -nmbdc²⁻ coordination modes in (I) create a new assembly that differs from the topologies of (III) and (IV). Moreover, in (I), the ability of the water molecule to serve as a bridge between two Ni^{II} ions seems to be both an unexpected and a remarkable phenomenon, accounting for the absence of coordination water molecules in (III) and (IV).

Intramolecular hydrogen bonds exist between water molecules and uncoordinated carboxylate O atoms $[O7W \cdot \cdot O2 = 2.509 (2) \text{ Å}$; Table 2]. There are abundant strong $\pi - \pi$ interactions in the two-dimensional network. As well as a $\pi - \pi$ stacking interaction (3.23 Å) between μ_2 -nmbdc²⁻ and μ_4 -nmbdc²⁻ ligands in the dimeric motif, $\pi - \pi$ stacking interactions exist between pairs of μ_2 -nmbdc²⁻ and neighboring μ_4 -nmbdc²⁻ ligands. Moreover, $\pi - \pi$ stacking of phen ligands among neighbouring dimeric motifs is observed (3.48 and 3.60 Å).

Experimental

A mixture of Ni(CH₃COO)₂·4H₂O (0.0376 g,0.15 mmol), 5-nitro-1,3benzenedicarboxylic acid (0.0318 g, 0.15 mmol), 1,10-phenanthroline (0.0304 g, 0.15 mmol) and water (10 ml) in a molar ratio of *ca* 1:1:1:3700 was sealed in a 25 ml Teflon-lined stainless steel reactor and heated at 453 K for 72 h. After cooling, blue plate-like crystals of (I) were collected by filtration. Analysis calculated for C₄₀H₄₆N₆-Ni₂O₁₃: C 51.70, H 2.65, N 9.19%; found: C 51.64, H 2.70, N 9.36%. A weight loss in the temperature range 574–637 K corresponds to the release of the water molecule (calculated 1.97%, found 1.73%).

Crystal data

$Ni_2(C_8H_3NO_6)_2(C_{12}H_8N_2)_2(H_2O)]$	Mo $K\alpha$ radiation
$M_r = 914.03$	Cell parameters from 3176
Orthorhombic, Pnna	reflections
a = 29.5645 (13) Å	$\theta = 2.6-50.4^{\circ}$
b = 18.0613 (7) Å	$\mu = 1.15 \text{ mm}^{-1}$
c = 6.5961 (3) Å	T = 293 (2) K
V = 3522.1 (3) Å ³	Plate, blue
Z = 4	$0.54 \times 0.45 \times 0.06 \text{ mm}$
$D_x = 1.724 \text{ Mg m}^{-3}$	
Data collection	
Bruker SMART CCD area-detector	3176 independent reflections
diffractometer	2953 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.034$
Absorption correction: multi-scan	$\theta_{max} = 25.2^{\circ}$
(SADABS: Sheldrick, 1996)	$h = -23 \rightarrow 35$
$T_{\rm min} = 0.575, T_{\rm max} = 0.934$	$k = -21 \rightarrow 21$
17 323 measured reflections	$l = -7 \rightarrow 7$

Table 1

Selected geometric parameters (Å, °).

Ni1-O5 ⁱ	2.027 (2)	Ni1-O7	2.0762 (17)
Ni1-O4	2.052 (2)	Ni1-N2	2.104 (3)
Ni1-N1	2.067 (3)	Ni1-O1	2.172 (2)
05^{i} Ni1 -04	98 38 (9)	N1_N11_N2	80.04 (10)
O5 ⁱ -Ni1-N1	88.80 (10)	07-Ni1-N2	100.83 (10)
O4-Ni1-N1	96.15 (9)	O5 ⁱ -Ni1-O1	86.81 (9)
O5 ⁱ -Ni1-O7	89.08 (9)	O4-Ni1-O1	174.63 (9)
O4-Ni1-O7	93.17 (7)	N1-Ni1-O1	82.52 (9)
N1-Ni1-O7	170.65 (8)	O7-Ni1-O1	88.27 (8)
O5 ⁱ -Ni1-N2	166.85 (10)	N2-Ni1-O1	84.89 (10)
O4-Ni1-N2	89.76 (10)		

Symmetry code: (i) $\frac{1}{2} - x$, 1 - y, z.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_a^2) + (0.039P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.048$	+7.1492P]
$wR(F^2) = 0.108$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.15	$(\Delta/\sigma)_{\rm max} = 0.001$
3176 reflections	$\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$
282 parameters	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - H \cdots A$
$O7-H7A\cdots O1$	0.85 (3)	2.47 (4)	2.959 (2)	117 (3)
$O7-H7A\cdots O2$	0.85 (3)	1.68 (3)	2.509 (2)	163 (4)

H atoms attached to C atoms were positioned geometrically and treated as riding, with C–H distances of 0.93 Å and $U_{\rm iso}({\rm H})$ values of $1.2U_{\rm eq}({\rm C})$. Water H atoms were found in a difference Fourier map and included in the refinement with an O–H distance restraint (0.85 Å) and with $U_{\rm iso}({\rm H})$ values set at 0.05 Å².

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART*; data reduction: *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (grant No. 50073019).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1206). Services for accessing these data are described at the back of the journal.

References

- Barrios, A. M. & Lippard, S. J. (1999). J. Am. Chem. Soc. 121, 11751– 11757.
- Barrios, A. M. & Lippard, S. J. (2000). J. Am. Chem. Soc. 122, 9172-9177.
- Braqun, M. E., Steffek, C. D., Kim, J., Rasmussen, P. G. & Yaghi, O. M. (2001). *Chem. Commun.* pp. 2532–2533.
- Bruker (1997). SMART (Version 5.044) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Eremenko, I. L., Nefedov, S. E., Sidorov, A. A., Golubnichaya, M. A., Danilov, P. V., Ikorskii, V. N., Shvedenkov, Y. G., Novotortsev, V. M. & Moiseev, H. I. (1999). *Inorg. Chem.* 38, 3764–3773.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gao, L., Zhao, J., Li, G. H., Shi, Z. & Feng, S. H. (2003). Inorg. Chem. Commun. 6, 1249–1251.
- Jabri, E., Carr, M. B., Hausinger, R. P. & Karplus, P. A. (1995). Science, 268, 998–1004.
- Li, H. L., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8571–8572.
- Person, M. A., Michel, L. O., Hausinger, R. P. & Karplus, P. A. (1997). Biochemistry, 36, 8164–8172.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sung, N. D., Yun, K. S., Kim, T. Y., Choi, K. Y., Suh, M., Kim, J. G., Suh, I. H. & Chin, J. (2001). *Inorg. Chem. Commun.* 4, 377–380.
- Zhou, Y. L., He, H. Y. & Zhu, L. G. (2004). Chin. J. Inorg. Chem. 20, 576– 579.